

The effect of carotenoids and flavones on oxidative stress in endothelial cells

Esther Paran MD Hypertension Research Center Faculty of Health Sciences Ben-Gurion University

Cardiovascular Mortality Risk Doubles with Each 20/10 mmHg Increment in Systolic/Diastolic BP*

Cardiovascular mortality risk

Lewington et al. Lancet 2002;360:1903-13

BP Reduction of 2 mmHg Decreases the Risk of Cardiovascular Events by 7–10%

- Meta-analysis of 61 prospective, observational studies
- 1 million adults
- 12.7 million person-years

2 mmHg decrease in mean SBP 7% reduction in risk of ischemic heart disease mortality

10% reduction in risk of stroke mortality

Lewington et al. Lancet 2002;360:1903-13

Endothelial function

[Celermajer DS. 2002]

Dilation vs Constriction Thromboresistance vs Thrombosis

> 1 ½ kg. 6 tennis courts Semi-permeable

SMC inhibition vs SMC proliferation Anti-inflammation vs Proinflammation

Imbalance in Factors Affecting Vascular Tone and Structure

factors

ROS Reduces the Biological Effects of NO

Afferent Arteriole

Hypertension Online www.hypertensiononline. org

Oxidative Stress: Endothelial Dysfunction and CAD/Renal Risk Factors

Endothelial dysfunction

Fibrinoid necrosis

igure 1: Range of hypertensive cardiovascular disease from prehypertension to target-organ damage and indistance disease

Reactive oxygen species and endothelial dysfunction

Werner N, Nickenig G. Eur Heart J. 2003; 5(suppl A): A9-A13

Regulatory Functions of the Endothelium Normal Dysfunction

Vasodilation NO, PGI₂, EDHF, BK, C-NP

Thrombolysis tPA, Protein C, TF-I, vonWF

Platelet Disaggregation NO, PGI₂

Antiproliferation NO, PGI₂, TGF-β, Hep

> Lipolysis LPL

Vasoconstriction ROS, ET-1, TxA₂, A-II, PGH₂

ThrombosisPAI-1, TF, Tx-A2

Adhesion Molecules

CAMs, Selectins

Growth Factors

ET-1, A-II, PDGF, bFGF, ILGF, Interleukins

Inflammation

ROS, NF-кВ

How to Assess ED

- Endothelium-dependent vasodilation
 - Acetyl choline or post-ischaemic FMD*
 - Coronary or forearm arteries
- Intima-media thickness (IMT)
- Microalbuminuria
- Plasma markers
 - ADMA, CRP, adhesion molecules
- Clinical diagnosis
- flow-mediated dilatation (FMD)
- asymmetric dimethylarginine (ADMA)

Can we prevent endothelial dysfunction? Are there treatments for endothelial dysfunction? Is it a reversible process? **Prehypertension** = endothelial dysfunction?

Correcting Endothelial Dysfunction

- Risk factor modification (BP, DM, Smoking)
- Exercise and weight loss
- Blockade of the RAS- ACE Ø / ARB
- LDL reduction, HDL augmentation.
- PPAR-y agonists
- Antioxidants
- Reducing homocysteine levels
- Improving insulin sensitivity
- Lowering CRP
- L-arginine.

Life style modifications

- Lose weight, if overweight
- Limit alcohol intake
- Increase physical activity
- Reduce salt intake
- Stop smoking
- Limit intake of foods rich in fats and cholesterol: DASH Diet

JNC VII and ESH recommendation

Blood Pressure Reductions Resulting from Various Lifestyle Modifications Trials of Hypertension Prevention – Phase I

*All values are averages and are statistically significant at P < 0.01.</p>

Trials of Hypertension Prevention Collaborative Research Group. JAMA. 1992;267:1213-1220. Copyright © 1992, American Medical Association. All rights reserved.

Slide Source Hypertension Online www.hypertensiononline.org

Effect of Antihypertensive Monotherapy Is Augmented by Lifestyle Modifications*

Diet-Exercise-Weight Loss Intervention Trial

"Low-calorie, low-sodium diet and exercise. "A single antihypertensive drug.

Reprinted from Miller ER III, et al. Hypertension. 2002;40: 612-618, with permission from Lippincott Williams & Wilkins. Silde Source Hypertension Online rww.hypertensiononline.org

Health benefit of carotenoids

- Epidemiological studies
- Clinical data
- Clinical studies
- Animal experiments
- In vitro models

Epidemiologic evidence

High serum values of carotenoids such as αcarotene, β-carotene, and lycopene were found to be significantly associated with low hazard ratios for cardiovascular disease mortality.

Japan 3061 people; 12 years follow-up Ito et al J Epidemiol, 2006. 16, 154-60

The Kuopio Ischaemic Heart Disease Risk Factor Study

725 middle-aged men free of CVD at the study baseline

Low plasma lycopene concentration is associated with increased intima-media thickness of the carotid artery wall and excess incidence of acute coronary events and stroke:

Men in the **lowest quartile** of serum levels of lycopene had a **3.3-fold** (P < 0.001) risk of the acute coronary event or stroke as compared with others

> Rissanen et al 1.Arterioscler Thromb Vasc Biol, 2000. 20 2677-811 2.Br J Nutr, 2001 85, 749-54 3.Am J Clin Nutr, 2003 77, 133-8

Clinical Data Decreased Oxidized LDL concentrations after consumption of the tomato meals

Decreased LDL oxidation after tomato ext consumption

Fatty meal containing 30 mg lycopene in the form of tomato oleoresin (LycoMato)

A. Lycopene Absorption 125 Lycopene Concentration 100 (nmol/L) 75 50 25 0 3 Hours 5 Hours 0 Time Before Meal After Meal (nmol MDA/mg LDL protein) B. LDL Oxidation 60 - Oxidation 40 Ę 20 0 Time 3 Hours 5 Hours Before Meal After Meal

Aviram et al. Antioxidants & Redox Signaling 2, 492, 2000

IL-6 concentrations at baseline & after consumption of tomato and control meals

Consumption of tomato meal increased Flow-Mediated Dilation (FMD)

Engelmann N J et al. Adv Nutr 2011;2:51-61

©2011 by American Society for Nutrition

תכולת חומרי המזון השומניים במיצוי מעגבניות LYC-O-MATO®

Clinical studies Aims

Examining the effects of tomato lycopene on:

- Systolic and diastolic blood pressure
- Biochemical parameters:

Serum lipids and lipoproteins

Oxidative stress markers

Results

Systolic blood pressure

Significant reduction of SBP has been achieved as early as the sixth week of Cardi-O-Mato administration, -4.7 mm Hengendard Or manual ge. Anntheare 102000, 95 100

Results

Diastolic blood pressure

Significant reduction in DBP was demonstrated as early as the fourth week (-1.27 mm Hg, p=0.029) and Engelmal g. Parather Am. Heare K2006, 151:00

Results

Thiobarbituric acid reactive substances

Engelhard Y. Paran E. Am .Heart J 2006, 151: 100

Conclusions

Tomato lycopene can reduce systolic and diastolic blood pressure significantly in newly diagnosed never treated mild hypertensives

- The same effect of tomato lycopene was recorded in mild to moderate treated patients
- Patients were compliant with the treatment at least for the relatively short term of these studies (12-16 weeks)

No side effect was observed in any of the patients in all studies

Study design Prehypertensives

The study consists of three phases:

- <u>Phase I</u> Single-blind *placebo* run–in period for 4 weeks.
- <u>Phase II</u> Double-blind 5 arm parallel group for 8 weeks of:
 - 1. Cardi-O-Mato 5mg
 - 2. Cardi-O-Mato 15mg
 - 3. Cardi-O-Mato 30mg
 - 4. Lycopene 15 mg
 - 5. Placebo
- Phase III Long term treatment for 3 months with Cardi-O-Mato 15mg

Dose-response study in prehypertensive subjects

Systolic blood pressure changes during phase I-II of the study

Significant reduction of SBP after 4 weeks already with Cardi-O-Mato 15 and 30 mg

Conclusions

- Tomato lycopene (Cardi-O-Mato) in doses 15mg and 30 mg reduced
 - SBP by 9 and 7mmHg compared to 1.97 mmHg by placebo or synthetic lycopene
 - DBP was reduced by 4.15 and 3.8 mmHg compared

to 0.7 and -0.9 mmHg with synthetic lycopene and placebo

 The dose of 5mg caused very mild non-significant reduction in SBP and DBP

What is the mechanism for the antihypertensive effect of the tomato lycopene?

- At what point the anti-oxidant property is interferes with the vasoconstrictive forces?
- Are these actions restricted to the endothelium?
- Is there one active component that does all the work or is there a unique combination of micronutrients that responsible for the effect?

Effect of Lyc-O-Mato® Supplementation on Endothelial Function and Oxidative Stress

Clinical trial setting

 Healthy frequent smoking men (n=126) were randomized to receive placebo, Lyc-O-Mato® pills (6 or 15 mg lycopene) daily for 8-week

Endpoints:

- Endothelial function as measured by reactive hyperemia peripheral arterial tonometry (RH-PAT)
- Oxidative stress measured by plasma superoxide dismutase (SOD) activity; Alkaline comet assay for DNA damage in circulating lymphocytes; Plasma sVCAM-1, sICAM-1 and LDL particle size

Kim et al. Atherosclerosis, 2011. 215(1): p. 189-95.

Lyc-O-Mato® Increased lycopene blood level

Changes in adhesion molecules ICAM and VCAM

Kim et al. Atherosclerosis, 2011. 215(1): p. 189-95.

Endothelial Function improved after Lyc-O-Mato® consumption

Endothelial Function measured by Reactive Hyperemia Peripheral Arterial Tonometry (RH-PAT)

Kim et al Atherosclerosis, 2011. 215(1): p. 189-95.

Systolic blood pressure was reduced after Lyc-O-Mato® consumption

Kim et al Atherosclerosis, 2011. 215(1): p. 189-95.

Regulatory Functions of the Endothelium Normal Dysfunction

Vasodilation NO, PGI₂, EDHF, BK, C-NP

Thrombolysis tPA, Protein C, TF-I, vonWF

Platelet Disaggregation NO, PGI₂

Antiproliferation NO, PGI₂, TGF-β, Hep

> Lipolysis LPL

Vasoconstriction ROS, ET-1, TxA₂, A-II, PGH₂

ThrombosisPAI-1, TF, Tx-A2

Adhesion Molecules

CAMs, Selectins

Growth Factors

ET-1, A-II, PDGF, bFGF, ILGF, Interleukins

Inflammation

ROS, NF-кВ

Anti-inflammatory effect in animal models

studies carried out in:

- in vitro mouse macrophages
- in vivo animal models:

Paw edema in rats Peritonitis in mice

> By Prof Rachel Levy Ben-Gurion University

Endothelial dysfunction

Endothelial cells

NO

Endothelin

Vascular tone

Effect of carotenoids on NO induction and ET-1 secretion NO induction ET-1 secretion

ET-1 secretion (% of basal)

Adhesion of leukocytes

1. Lycopene, Lutein and tomato oleoresin inhibit the adhesion of white blood cells to stimulated EC A EA.hy 926 (cell-line)

Adhesion of leukocytes

selectins P-selectin (C,I) E-selectin (I) Immunoglobulin ICAM-1 (C,I) ICAM-2 (C)

VCAM-1 (C,I)

NFkB

2a. Carotenoids and tomato-oleoresin reduce expression of adhesion molecules (ICAM-1 & VCAM-1) in stimulated EC

Effects of carotenoids on TNF-α-induced NF-κB activation in endothelial cells

To further investigate whether carotenoids act through regulation of NF-kB pathway, the effects of the carotenoids on dislocation of NF-kB-complex components (IkB, p65 and p50) were tested. Thirty minutes following exposure to TNF-α dramatic reduction in cytoplasm IkB was detected in both cell types

Reduction in cytoplasm IkB

Reduction in the production of the subunits P65 and P50

Conclusions

(in-vitro models)

- Carotenoids attenuate the adhesion of neutrophils to stimulated endothelial cells.
- Carotenoids reduce expression of adhesion molecule ICAM-1
- Carotenoids inhibit activation of transcription factor NFkB

Carotenoids inhibit vasoconstrictive and pro-inflammatory effects and improve endothelial function

